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Abstract Data from social media platforms and online communities
have fueled the growth of computational social science. In this chap-
ter, we use computational analysis to characterize the state of research
on social media and demonstrate the utility of such methods. First,
we discuss how to obtain datasets from the APIs published by many
social media platforms. Then, we perform some of the most widely
used computational analyses on a dataset of social media scholarship we
extract from the Scopus bibliographic database’s API. We apply three
methods: network analysis, topic modeling using latent Dirichlet allo-
cation, and statistical prediction using machine learning. For each tech-
nique, we explain the method and demonstrate how it can be used to
draw insights from our dataset. Our analyses reveal overlapping schol-
arly communities studying social media. We find that early social me-
dia research applied social network analysis and quantitative methods,
but the most cited and influential work has come from marketing and
medical research. We also find that publication venue and, to a lesser
degree, textual features of papers explain the largest variation in incom-
ing citations. We conclude with some consideration of the limitations
of computational research and future directions.

INTRODUCTION

The combination of large-scale trace data generated through social media with
a series of advances in computing and statistics have enabled the growth of
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‘computational social science’ (Lazer et al., 2009). This turn presents an un-
precedented opportunity for researchers who can now test social theories us-
ing massive datasets of fine-grained, unobtrusively collected behavioral data.
In this chapter, we aim to introduce non-technical readers to the promise of
these computational social science techniques by applying three of the most
common approaches to a bibliographic dataset of social media scholarship.
We use our analyses as a context for discussing the benefits of each approach as
well as some of the common pitfalls and dangers of computational approaches.

The chapter walks through the entire process of computational analysis,
beginning with data collection. We explain how we gather a large-scale dataset
about social media research from the Scopus website’s application program-
ming interface. The dataset we collect contains metadata about every article
in the Scopus database that includes the term ‘social media’ in its title, ab-
stract, or keywords. Using this dataset, we perform multiple computational
analyses. First, we use network analysis (Wasserman & Faust, 1994) on arti-
cle citation metadata to understand the structure of references between the
articles. Second, we use topic models (Blei, 2012), an unsupervised natural
language processing technique, to describe the distribution of topics within
the sample of articles included in our analysis. Third, we perform statisti-
cal prediction (James, Witten, Hastie, & Tibshirani, 2013) in order to under-
stand what characteristics of articles best predict subsequent citations. For
each analysis, we describe the method we use in detail and discuss some of its
benefits and limitations.

Our results reveal several patterns in social media scholarship. Biblio-
metric network data reveals disparities in the degree that disciplines cite each
other and illustrate that marketing and medical research each enjoy surpris-
ingly large influence. Through descriptive analysis and topic modeling, we
find evidence of the early influence of social network research. When we use
papers’ characteristics to predict which work gets cited, we find that publica-
tion venues and linguistic features provide the most explanatory power.

In carrying out our work in this chapter, we seek to exemplify several cur-
rent best practices in computational research. We use data collected in a man-
ner consistent with the expectations of privacy and access held by the subjects
of our analysis as well as the publishers of the data source. We also make our
analysis fully reproducible from start to finish. In an online supplement, we
provide the full source code for all aspects of this project – from the beginning
of data collection to the creation of the figures and the chapter text itself – as
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a resource for future researchers.

COLLECTING AND DESCRIBING DATA FROM THE WEB

A major part of computational research consists of obtaining data, prepar-
ing it for analysis, and generating initial descriptions that can help guide sub-
sequent inquiry. Social media datasets vary in how they make it into re-
searchers’ hands. There are several sources of social media data which are
provided in a form that is pre-processed and ready for analysis. For example,
The Stanford Large Network Dataset Collection (Leskovec & Krevl, 2014)
contains pre-formatted and processed data from a variety of social media plat-
forms. Typically, prepared datasets come formatted as ‘flat files’ such as comma-
separated value (CSV) tables, which many types of statistical software and
programming tools can import directly.

More typically, researchers retrieve data directly from social media plat-
forms or other web-based sources. These ‘primary’ sources provide more ex-
tensive, dynamic, and up-to-date datasets, but also require much more work
to prepare the data for analysis. Typically, researchers retrieve these data from
social media sites through application programming interfaces (APIs). Web
sites and platforms use APIs to provide programmers with limited access to
their servers and databases. Unfortunately, APIs are rarely designed with re-
search in mind and are often inconvenient and limited for social scientists as a
result. For example, Twitter’s search API returns a small, non-random sample
of tweets by default (what a user might want to read), rather than all of the
tweets that match a given query (what a researcher building a sample would
want). In addition, APIs typically limit how much data they will provide
for each query and how many queries can be submitted within a given time
period.

APIs provide raw data in formats like XML or JSON, which are poorly
suited to most data analysis tasks. As a result, researchers must take the inter-
mediate step of converting data into more appropriate formats and structures.
Typically, researchers must also construct measures from the raw data, such as
user-level statistics (e.g., number of retweets) or metadata (e.g., post length).
A number of tools, such as NodeXL (Hansen, Shneiderman, & Smith, 2010),
exist to make the process of obtaining and preparing digital trace data easier.
However, off-the-shelf tools tend to come with their own limitations and, in
our experience, gathering data amenable to computational analysis usually
involves some programming work.
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Compared to some traditional forms of data collection, obtaining and
preparing social media data has high initial costs. It frequently involves writ-
ing and debugging custom software, reading documentation about APIs, learn-
ing new software libraries, and testing datasets for completeness and accuracy.
However, computational methods scale very well and gathering additional
data often simply means expanding the date range in a program . Contrast this
with interviews, surveys, or experiments, where recruitment is often labor-
intensive, expensive, and slow. Such scalability, paired with the massive par-
ticipation on many social media platforms, can support the collection of very
large samples.

Our application: The Scopus Bibliographic Database

We used a series of Scopus Bibliographic Database APIs to retrieve data about
all of the publications in their database that contained the phrase ‘social me-
dia’ in their abstract, title, or keywords. We used the Python programming
language to write custom software to download this data. First, we wrote a
program to query the Scopus Search API to retrieve a list of the articles that
matched our criteria. We stored the resulting list of 23,131 articles in a file.
We used this list of articles as input to a second program, which used the Sco-
pus Citations Overview API to retrieve metadata about all of the articles that
cited these 23,131 articles. Finally, we wrote a third program that used the
Scopus Abstract Retrieval API to download abstracts and additional metadata
about the original 23,131 articles. Due to rate limits and the process of trial
and error involved in writing, testing, and debugging these custom programs,
it took a few weeks to obtain the complete dataset.

Like many social media APIs, the Scopus APIs returns data in JSON for-
mat. Although not suitable for analysis without processing, we stored this
JSON data in the form it was given to us. Retaining the ‘raw’ data as it was
provided by APIs allows researchers to construct new measures they might
not have believed were relevant in the early stages of their research and to fix
any bugs that they find in their data processing and reduction code without
having to re-download raw data. Once we obtained the raw data, we wrote
additional Python scripts to turn the downloaded JSON files into CSV tables
which could be imported into Python and R, the programming languages we
used to complete our analyses.
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Results

The Scopus dataset contains a wide variety of data, and many different de-
scriptive statistics could speak to various research questions. Here we present
a sample of the sorts of summary data that computational researchers might
explore. We begin by looking at where social media research is produced. Ta-
ble 6.1 shows the number of papers produced by authors located in each of
the six most frequently seen countries in our dataset.1 We can immediately
see that the English-language world produces much of the research on social
media (which is perhaps unsurprising given that our search term was in En-
glish), but that a large amount of research comes from authors in China and
Germany.

Country Number of Papers
United States 7812
United Kingdom 1711
Australia 1096
China 926
Germany 787
Canada 771

Table 6.1: Top author countries by number of social media papers.

Next we look at the disciplines that publish social media research. Figure
6.1 shows the number of papers containing the term ‘social media’ over time.
The plot illustrates that the quantity of published research on social media has
increased rapidly over time. The growth appears to slow down more recently,
but this may be due to the speed at which the Scopus database imports data
about new articles.

Figure 6.1 shows the top ten disciplines, as categorized by Scopus. We see
that the field started off dominated by computer science publications, with
additional disciplines increasing their activity in recent years. This story is
also reflected in the top venues, listed in Table 6.2, where we see that computer
science venues have published social media research most frequently.

1Technically, each paper is assigned to the modal (i.e., most frequent) country among
its authors. For example, if a paper has three authors with two authors located in Canada
and one in Japan, the modal country for the paper would be Canada. Any ties (i.e., if more
than one country is tied for most frequent location among a paper’s authors) were broken by
randomly selecting among the tied countries.
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Publication Venue Papers
Lecture Notes in Computer Science 935
ACM International Conference Proceeding Series 288
Computers in Human Behavior 257
CEUR Workshop Proceedings 227
Proceedings of the Hawaii International Conference on Sys-
tem Sciences

179

Journal of Medical Internet Research 170

Table 6.2: Venues with the most social media papers.

Title Publication Venue Cited by
Users of the world, unite! The chal-
lenges and opportunities of Social
Media

Business Horizons 1876

Why we twitter: Understanding mi-
croblogging usage and communities

Proceedings of We-
bKDD / SNA-KDD
2007

645

Social media? Get serious! Un-
derstanding the functional building
blocks of social media

Business Horizons 468

Social media: The new hybrid ele-
ment of the promotion mix

Business Horizons 450

Role of social media in online travel
information search

Tourism Manage-
ment

389

Networked narratives: Understand-
ing word-of-mouth marketing in on-
line communities

Journal of Marketing 335

Table 6.3: Most cited social media papers.
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Figure 6.1: Social media papers published in the top ten disciplines (as categorized
by Scopus), over time.

We then consider the impact of this set of papers as measured by the ci-
tations they have received. Like many phenomena in social systems, citation
counts follow a highly skewed distribution with a few papers receiving many
citations and most papers receiving very few. Table 6.3 provides a list of the
most cited papers. These sorts of distributions suggest the presence of ‘prefer-
ential attachment’ (Barabási & Albert, 1999) or the ‘Matthew effect’ (Merton,
1968), where success leads to greater success.

Discussion

The summary statistics and exploratory visualizations presented above pro-
vide an overview of the scope and trajectory of social media research. We find
that social media research is growing – both overall and within many disci-
plines. We find evidence that computer scientists laid the groundwork for the
study of social media, but that social scientists, learning scientists, and medical
researchers have increasingly been referring to social media in their published
work. We also find several business and marketing papers among the most
cited pieces of social media research even though neither these disciplines nor
their journals appear among the most prevalent in the dataset.

These results are interesting and believable because they come from a com-
prehensive database of academic work. In most social science contexts, re-
searchers have to sample from a population and that sampling is often biased.
For example, the people willing to come to a lab to participate in a study or
take a phone survey may have different attributes from those unwilling to par-
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ticipate. This makes generalizing to the entire population problematic. When
using trace data, on the other hand, we often have data from all members of a
community including those who would not have chosen to participate. One
of the primary benefits of collecting data from a comprehensive resource like
Scopus is that it can reduce some types of bias in the data collection process.
For example, we do not have backgrounds in education or medical research;
had we tried to summarize the state of social media research by identifying
articles and journals manually, we might have overlooked these disciplines.

That said, this apparent benefit can also become a liability when we seek
to generalize our results beyond the community that we have data for. The
large N of big data studies using social media traces may make results appear
more valid, precise, or certain, but a biased sample does not become less bi-
ased just because it is larger (Hargittai, 2015). For example, a sample of 100
million Twitter users might be a worse predictor of election results than a
truly random sample of only 1,000 likely voters because Twitter users likely
have different attributes and opinions than the voting public. Another risk
comes from the danger that data providers collect or filter data in ways that
aren’t apparent. Researchers should think carefully about the relationship of
their data to the population they wish to study and find ways to estimate bias
empirically.

Overall, we view the ease of obtaining and analyzing digital traces as one
of the most exciting developments in social science. Although the hurdles
involved represent a real challenge to many scholars of social media today,
learning the technical skills required to obtain online trace data is no more
challenging than the statistics training that is part of many PhD programs.
Below, we present examples of a few computational analyses that can be done
with this sort of data.

NETWORK ANALYSIS

Social network analysis encompasses the most established set of computa-
tional methods in the social sciences (Wasserman & Faust, 1994). At its core,
network analysis revolves around a ‘graph’ representation of data that tries
to capture relationships (called edges) between discrete objects (called nodes).
Graphs can represent any type of object and relationship, such as roads con-
necting a group of cities or shared ingredients across a set of recipes. Graph
representations of data, and the network analytic methods built to reason us-
ing these data, are widely used across the social sciences as well as other fields
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including physics, genomics, computer science, and philosophy. ‘Social net-
work analysis’ constitutes a specialized branch of network analysis in which
nodes represent people (or other social entities) and edges represent social re-
lationships like friendship, interaction, or communication.

The power of network analysis stems from its capacity to reduce a very
large and complex dataset to a relatively simple set of relations that possess
enormous explanatory power. For example, Hausmann et al. (2014) use net-
work data on the presence or absence of trading relationships between coun-
tries to build a series of extremely accurate predictions about countries’ rel-
ative wealth and economic performance over time. By reasoning over a set
of relationships in a network, Hausmann and his colleagues show that details
of the nature or amount of goods exchanged are not necessary to arrive at
accurate economic conclusions.

Network analysis has flourished in studies of citation patterns within schol-
arly literature, called ‘bibliometrics’ or ‘scientometrics.’ Bibliometric schol-
ars have developed and applied network analytic tools for more than a half-
century (Kessler, 1963; Hood & Wilson, 2001). As a result, bibliometric
analysis provides an obvious jumping-off point for our tour of computational
methods. Because network methods reflect a whole family of statistics, algo-
rithms, and applications, we focus on approaches that are both well-suited to
bibliometric analysis and representative of network analyses used in compu-
tational social science more broadly.

Our application: Citation networks

Our network analysis begins by representing citation information we col-
lected from the Scopus APIs as a graph. In our representation, each node
represents a paper and each edge represents a citation. Scopus provides data
on incoming citations for each article. Our full dataset includes 35,620 in-
coming citations to the 23,131 articles in Scopus with ‘social media’ in their
titles, abstracts, or keywords. 19,267 of these articles (83%) have not been
cited even once by another article in Scopus and 18,324 (79%) do not cite any
other article in our sample. The recent development of social media and the
rapid growth of the field depicted in Figure 6.1 might help explain the sparse-
ness (i.e. lack of connections) of the graph. As a result, and as is often the case
in network analysis, a majority of our dataset plays no role in our analysis
described in the rest of this section.

Once we create our citation graph, there are many potential ways to an-
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alyze it. One important application, common to bibliometrics, is the com-
putational identification of communities or clusters within networks. In net-
work studies, the term ‘community’ is used to refer to groups of nodes that are
densely connected to each other but relatively less connected to other groups.
In bibliometric analyses, communities can describe fields or sub-fields of ar-
ticles which cite each other, but are much less likely to cite or be cited by
papers in other groups. Although there are many statistical approaches to
community detection in network science, we use a technique from Rosvall
and Bergstrom (2008) that has been identified as appropriate for the study of
bibliometric networks (Šubelj, Eck, & Waltman, 2016). By looking at the
most frequently occurring journals and publication venues in each commu-
nity, we are able to identify and name sub-fields of social media research as
distinct communities.

A citation graph is only one possible network representation of the rela-
tionships between articles. For example, the use of common topics or termi-
nology might constitute another type of edge. Alternatively, journals or in-
dividual authors (rather than articles) might constitute an alternative source
of nodes. In bibliometric analyses, for example, it is common for edges to
represent ‘co-citations’ between articles or authors. Using this approach, pa-
pers are said to be tied together by a co-citation if they have both been cited
in a third document (Small, 1973). Due to limited space, we only present the
simplest case of direct citations.

Results

As is common in social networks, the large majority of articles with any cita-
tions connect to each other in one large ‘component’ or sub-network. Figure
6.2 shows a visualization of this large component. The optimal way to repre-
sent network data in two-dimensional space is a topic of research and debate.
Figure 6.2 uses a force-directed drawing technique (Fruchterman & Reingold,
1991), the most widely used algorithm in network visualization, using the
free/open source software package Gephi (Bastian, Heymann, Jacomy, et al.,
2009). The basic idea behind the algorithm is that nodes naturally push away
from each other, but are pulled together by the edges between them. Shades in
each graph in this section reflect the communities of documents identified by
Rosvall and colleagues’ ‘map’ algorithm (Martin Rosvall & Bergstrom, 2008;
M. Rosvall, Axelsson, & Bergstrom, 2010). Although the algorithm identi-
fied several dozen communities, most are extremely small, so we have shown
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Figure 6.2: Network visualization of the citation network in our dataset. The layout
is ‘force directed’ meaning that nodes (papers) with more edges (citations) appear
closer to the center of the figure.

only the largest 6 communities in Figure 6.2. Each of these communities are
summarized in Table 6.4 where the right-most column lists the three most
common journals for the articles included in each community.

At this point, we could look in more depth at the attributes of the dif-
ferent communities. For example, in a bibliometric analysis published in the
journal Scientometrics, Kovács, Looy, and Cassiman (2015) reported summary
statistics for articles in each of the major communities identified (e.g., the aver-
age number of citations) as well as qualitative descriptions of the nodes in each
community. We can see from looking at Table 6.4 that the communities point
to the existence of coherent thematic groups. For example, Community 1

includes biomedical research while Community 3 contains papers published
in communication journals. Earlier, we relied on an existing category scheme
applied to journals to create Figure 6.1; all articles published in particular jour-
nals were treated as being within one field. Network analysis, however, can
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Community Description Journals

Community 1 biomedicine; bioinfor-
matics

Journal of Medical Internet Research;
PLoS ONE; Studies in Health Tech-
nology and Informatics

Community 2 information technol-
ogy; management

Computers in Human Behavior; Busi-
ness Horizons; Journal of Interactive
Marketing

Community 3 communication
Information Communication and So-
ciety; New Media and Society; Journal
of Communication

Community 4 computer science; net-
work science

Lecture Notes in Computer Science;
PLoS ONE; WWW; KDD

Community 5 psychology; psycho-
metrics

Computers in Human Behavior; Cy-
berpsychology, Behavior, and Social
Networking; Computers and Educa-
tion

Community 6 multimedia
IEEE Transactions on Multimedia;
Lecture Notes in Computer Science;
ACM Multimedia

Table 6.4: Description of each of the citation network clusters identified by the com-
munity detection algorithm, together with a list of the three most common journals
in each community.

identify groups and categories of articles in terms of who is citing whom and,
as a result, can reveal groups that cross journal boundaries. PLoS ONE, for
example, is a ‘megajournal’ that publishes articles from all scientific fields (Bin-
field, 2012). As a result, PLoS ONE is one of the most frequently included
journals in both Community 1 and Community 4 . In a journal-based cat-
egorization system, articles may be misclassified or not classified at all.

Network analysis can also reveal details about the connections between
fields. Figure 6.3 shows a second network we have created in which our com-
munities are represented as nodes and citations from articles in one commu-
nity to articles in the other communities are represented as edges. The thick-
ness of each edge represents the number of citations and the graph shows
the directional strength of the relative connections between communities.
For example, the graph suggests that the communication studies community
( Community 3 ) cites many papers in information technology and manage-

ment ( Community 2 ) but that this relationship is not reciprocated.
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Figure 6.3: Graphical representation of citations between communities using the
same mapping described in Table 6.4. The size of the nodes reflects the total number
of papers in each community. The thickness of each edge reflects the number of
outgoing citations. Edges are directional, and share the color of their source (i.e.,
citing) community.

Discussion

Like many computational methods, the power of network techniques comes
from representing complex relationships in simplified forms. Although ele-
gant and powerful, the network analysis approach is inherently reductive in
nature and limited in many ways. What we gain in our ability to analyze mil-
lions or billions of individuals comes at the cost of speaking about particular
individuals and sub-groups. A second limitation stems from the huge num-
ber of relationships that can be represented in graphs. A citation network and
a co-citation network, for example, represent different types of connections
and these differences might lead an algorithm to identify different communi-
ties. As a result, choices about the way that edges and nodes are defined can
lead to very different conclusions about the structure of a network or the in-
fluence of particular nodes. Network analyses often treat all connections and
all nodes as similar in ways that mask important variation.

Network analysis is built on the assumption that knowing about the re-
lationships between individuals in a system is often as important, and some-
times more important, than knowing about the individuals themselves. It in-
herently recognizes interdependence and the importance of social structures.
This perspective comes with a cost, however. The relational structure and in-
terdependence of social networks make it impossible to use traditional statisti-
cal methods. SNA practitioners have had to move to more complex modeling
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strategies and simulations to test hypotheses.

TEXT ANALYSIS

Social media produces an incredible amount of text, and social media researchers
often analyze the content of this text. For example, researchers use ethno-
graphic approaches (Kozinets, 2002) or content analysis (Chew & Eysenbach,
2010) to study the texts of interactions online. Because the amount of text
available for analysis is far beyond the ability of any set of researchers to ana-
lyze by hand, scholars increasingly turn to computational approaches. Some
of these analyses are fairly simple, such as tracking the occurrence of terms
related to a topic or psychological construct (Tausczik & Pennebaker, 2010).
Others are more complicated, using tools from natural language processing
(NLP). NLP includes a range of approaches in which algorithms are applied
to texts, such as machine translation, optical character recognition, and part-
of-speech tagging. Perhaps the most common use in the social sciences is sen-
timent analysis, in which the affect of a piece of text is intuited based on the
words that are used (Asur & Huberman, 2010). Many of these techniques
have applications for social media research.

One natural language processing technique—topic modeling—is used in-
creasingly often in computational social science research. Topic modeling
seeks to identify topics automatically within a set of documents. In this sense,
topic modeling is analogous to content analysis or other manual forms of doc-
ument coding and labeling. However, topic models are a completely auto-
mated, unsupervised computational method—i.e., topic modeling algorithms
do not require any sort of human intervention, such as hand-coded training
data or dictionaries of terms. Topic modeling scales well to even very large
datasets, and is most usefully applied to large corpora of text where labor-
intensive methods like manual coding are simply not an option.

When using the technique, a researcher begins by feeding topic modeling
software the texts that she would like to find topics for and by specifying the
number of topics to be returned. There are multiple algorithms for identi-
fying topics, but we focus on the most common: latent Dirichlet allocation
or LDA (Blei, Ng, & Jordan, 2003). The nuts and bolts of how LDA works
are complex and beyond the scope of this chapter, but the basic goal is fairly
simple: LDA identifies sets of words that are likely to be used together and
calls these sets ‘topics.’ For example, a computer science paper is likely to use
words like ‘algorithm’, ‘memory’, and ‘network.’ While a communication ar-
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ticle might also use ‘network,’ it would be much less likely to use ‘algorithm’
and more likely to use words like ‘media’ and ‘influence.’ The other key fea-
ture of LDA is that it does not treat documents as belonging to only one topic,
but as consisting of a mixture of multiple topics with different degrees of em-
phasis. For example, an LDA analysis might characterize this chapter as a
mixture of computer science and communication (among other topics).

LDA identifies topics inductively from the observed distributions of words
in documents. The LDA algorithm looks at all of the words that co-occur
within a corpus of documents and assumes that words used in the same doc-
ument are more likely to be from the same topic. The algorithm then looks
across all of the documents and finds the set of topics and topic distributions
that would be, in a statistical sense, most likely to produce the observed doc-
uments. LDA’s output is the set of topics: ranked lists of words likely to be
used in documents about each topic, as well as the distribution of topics in
each document. DiMaggio, Nag, and Blei (2013) argue that while many as-
pects of topic modeling are simplistic, many of the assumptions have parallels
in sociological and communication theory. Perhaps more importantly, the
topics created by LDA frequently correspond to human intuition about how
documents should be grouped or classified.

The results of topic models can be used many ways. Our dataset includes
73 publications with the term ‘LDA’ in their abstracts. Some of these papers
use topic models to conduct large-scale content analysis, such as looking at the
topics used around health on Twitter (Prier, Smith, Giraud-Carrier, & Han-
son, 2011; Ghosh & Guha, 2013). Researchers commonly use topic modeling
for prediction and machine learning tasks, such as predicting a user’s gender or
personality type (Schwartz et al., 2013). Papers in the dataset also use LDA to
predict transitions between topics (Wang, Agichtein, & Benzi, 2012), to rec-
ommend friends based on similar topic use (Pennacchiotti & Gurumurthy,
2011), and to identify interesting tweets on Twitter (Yang & Rim, 2014).

Our application: Identifying topics in social media research

We apply LDA to the texts of abstracts in our dataset in order to identify top-
ics in social media research. We show how topics are extracted and labeled and
then use data on topic distributions to show how the focus of social media re-
search has changed over time. We begin by collecting each of the abstracts for
the papers in our sample. Scopus does not include abstract text for 2,801 of
the 23,131 articles in our sample. We examined a random sample of the en-
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tries with missing abstracts by hand, and found that abstracts for many simply
never existed (e.g., articles published in trade journals or books). Other arti-
cles had published abstracts, but the text of these abstracts, for reasons that are
not clear, were not available through Scopus.2 We proceed with the 20,330 ar-
ticles in our sample for which abstract data was available. The average abstract
in this dataset is 177 words long, with a max of 1,353 words and a minimum
of 5 (“The proceedings contain 15 papers.”).

We then remove ‘stop words’ (common words like ‘the,’‘of,’ etc.) and tok-
enize the documents by breaking them into unigrams and bigrams (one-word
and two-word terms). We analyze the data using the Python LatentDirichle-
tAllocation module from the scikit-learn library (Pedregosa et al., 2011). Choos-
ing the appropriate number of topics to be returned (typically referred to as
k) is a matter of some debate and research (e.g., Arun, Suresh, Madhavan, &
Murthy, 2010). After experimenting with different values of k, plotting the
distribution of topics each time in a way similar to the graphs shown in Figure
6.4, we ultimately set k as twelve. At higher values of k, additional topics only
rarely appeared in the abstracts.

Results

Table 6.5 shows the top words for each of the topics discovered by the LDA
model, sorted by how common each topic is in our dataset. At this point,
researchers typically evaluate the lists of words for coherence and give names
to each of the topics. For example, after looking at the words associated with
Topic 1 we gave it the name ‘Media Use.’ Of course, many other names for
this topic could be chosen. We might call it ‘Facebook research’ because it
is the only topic which includes the term ‘facebook.’ Researchers often vali-
date these names by looking at some of the texts which score highest for each
topic and subjectively evaluating the appropriateness of the chosen name as a
label for those texts. For example, we examined the abstracts of the five pa-
pers with the highest value for the ‘Media Use’ topic and confirmed that we
were comfortable claiming that they were examples of research about media
use. In this way, topic modeling requires a mixture of both quantitative and
qualitative interpretation. The computer provides results, but making sense
of those results requires familiarty with the data.

2This provides one example of how the details of missing data can be invisible or opaque.
It is easy to see how missing data like this could impact research results. For example, if
certain disciplines or topics are systematically less likely to include abstracts in Scopus, we
will have a skewed representation of the field.
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Media Use Social Network Analysis Consumer Analsyis Education Quantitative Analysis Information Spread

social social media students based twitter
media data social learning approach tweets
"social media" media "social media" knowledge method time
use "social media" new research proposed information
study information marketing education data messages
online users 2015 technology model events
facebook network business social text public
research networks brand use images videos
communication user communication media results crisis
public paper information "social media" media users
political web consumers design user mobile
article analysis companies tools search data
findings based organizations technologies using event
"use social" online management development image location
2014 "social networks" consumer digital topic used
people different customer 2015 propose 2014
new research services student paper emergency
results content strategies educational algorithm disaster
networking "social network" customers paper problem real
using people service project detection youtube

Health Sentiment Analysis News HCI Influence Methodology

health content news systems 2015 purpose
information springer women information model value
use sentiment study privacy influence implications
patients analysis facebook papers al findings
medical user posts based intention limited
care results articles music et paper
methods negative sexual security "et al" methodology
results generated participants personality factors approach
patient online page cloud perceived publishing
participants positive young alcohol smoking "publishing limited"
using study men model tobacco emerald
related opinion stories online "2015 elsevier" "emerald group"
internet reviews gender include satisfaction "group publishing"
reported comments journalists using theory practical
conclusions switzerland online software structural originality
support opinions significantly management variables design
used "sentiment analysis" female proceedings intentions research
clinical quality group discussed equation group
healthcare users exposure contain study "originality value"
risk media pages analysis addiction "methodology approach"

Table 6.5: Top 20 terms for each topic. Topics are presented in the order of their
frequency in the corpus of abstracts.
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Figure 6.4: Statistics from our LDA analysis, over time. The top panel shows topic
sums which capture the amount that each topic is used in abstracts, by year. The
middle panel shows topic means which are the average amount that each topic is used
in a given abstract. The bottom panel shows the amount that each topic is used in
abstracts, by year, weighted by citation count.

The top panel of Figure 6.4 shows how the distribution of topics identi-
fied by LDA in our analysis has changed over time. The LDA algorithm gives
each abstract a probability distribution over each of the topics, such that it
sums to 1 (e.g., a given abstract may be 80% ‘Social Network Analysis,’ 20%
‘Education,’ and 0% everything else). To construct Figure 6.4, we sum these
percentages for all of the documents published in each year and plot the re-
sulting prevalence of each topic over time.3

The figures provide insight into the history and trajectory of social me-
dia research. Looking at the top figure, it appears that the ‘Social Network
Analysis’ topic was the early leader in publishing on social media, but was
overtaken by the ‘Media Use’ topic around 2012. This pattern is even more
apparent when we look at the mean amount that each topic was used each
year (the middle panel of Figure 6.4). In the bottom panel, we take a third

3More complex approaches such as dynamic LDA (Blei & Lafferty, 2006) are often better
suited to identify the temporal evolution of topics.
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look at this data by weighting the topics used in each paper by the log of the
number of citations that the paper received. This final statistic characterizes
how influential each topic has been. The overall story is similar, although we
see that the ‘Health’ topic and the ‘Media Use’ topic are more influential than
the non-weighted figures suggest.

Discussion

Some of the strengths of topic modeling become apparent when we compare
these LDA-based analyses with the distribution of papers by discipline that
we created earlier (Figure 6.1). In our earlier attempt, we relied on the cate-
gories that Scopus provided and found that early interest in social media was
driven by computer science and information systems researchers. Through
topic modeling, we learn that these researchers engaged in social network
analysis (rather than interface design, for example). While some of our top-
ics match up well with the disciplines identified by Scopus, a few are more
broad (e.g., ‘Media Use’) and most are more narrow (e.g., ‘Sentiment Anal-
ysis’). This analysis provides a richer sense of the topics of interest to social
media researchers. Finally, these topics emerged inductively without any need
for explicit coding, such as classifying journals into disciplines. This final fea-
ture is a major benefit in social media research where text is rarely categorized
for researchers ahead of time.

Topic modeling provides an intuitive, approachable way of doing large-
scale text analysis. Its outputs can be understandable and theory-generating.
The inductive creation of topics has advantages over traditional content anal-
ysis or ‘supervised’ computational methods that require researchers to define
labels or categories of interest ahead of time. While topic models clearly lack
the nuance and depth of understanding that human coders bring to texts, the
method allows researchers to analyze datasets at a scale and granularity that
would take a huge amount of resources to code manually.

There are, of course, limitations to topic modeling. Many of LDA’s lim-
itations have analogues in manual coding. One we have already mentioned
is that researchers must choose the number of topics without any clear rules
about how to do so. Although a similar problem exists in content analysis, the
merging and splitting of topics can be done more intuitively and intentionally
when using traditional methods. An additional limitation is that topic mod-
eling tends to work best with many long documents. This can represent a
stumbling block for researchers with datasets of short social media posts or
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comments; in these cases posts can be aggregated by user or by page to pro-
duce meaningful topics. The scope of documents can also affect the results of
topic models. If, in addition to using abstracts about ‘social media,’ we had
also included abstracts containing the term ‘gene splicing,’ our twelve topics
would be divided between the two fields and each topic would be less granular.
To recover topics similar to those we report here, we would have to increase
the number of topics created.

As with network analysis, a goal of LDA is to distill large, messy, and
noisy data down to much simpler representations in order to find patterns.
Such simplification will always entail ignoring some part of what is going on.
Luckily, human coders and LDA have complementary advantages and disad-
vantages in this regard. Computational methods do not understand which
text is more or less important. Humans are good at seeing the meaning and
importance of topics, but may suffer from cognitive biases and miss out on
topics that are less salient (DiMaggio et al., 2013). Topic models work best
when they are interpreted by researchers with a rich understanding of the
texts and contexts under investigation.

PREDICTING CITATION

A final computational technique is statistical prediction. Statistical prediction
can come in handy in situations where researchers have a great deal of data, in-
cluding measures of an important, well-defined outcome they care about, but
little in the way of prior literature or theory to guide analysis. Prediction has
become a mainstream computational approach that encompasses a number of
specific statistical techniques including classification, cross validation, and ma-
chine learning (also known as statistical learning) methods (Tibshirani, 1996).
Arguably made most famous by Nate Silver (2015), who uses the technique to
predict elections and sporting event outcomes, prediction increasingly colors
public discourse about current events (Domingos, 2015).

There are many approaches to prediction. We focus on regression-based
prediction because it offers a reasonably straightforward workflow. Begin by
breaking a dataset into two random subsets: a large subset used as ‘training’
data and a small subset as ‘holdout’ or ‘test’ data. Next, use the training data
to construct a regression model of a given outcome (dependent variable) that
incorporates a set of features (independent variables) that might explain vari-
ations in the outcome. Apply statistical model selection techniques to deter-
mine the best weights (coefficients) to apply to the variables. Evaluate the per-

git revision ee37506 on 2018/02/19



21

formance of the model by seeing how accurately it can predict the outcome
on the test data. After selecting an appropriate model, assess and interpret the
items that most strongly predict the outcome. One can even compare the per-
formance of different or nested sets of features by repeating these steps with
multiple groups of independent variables.

Interpreting the results of statistical prediction can be less clear-cut. The
term ‘prediction’ suggests a deep knowledge of a complex social process and
the factors that determine a particular outcome. However, statistical predic-
tion often proves more suitable for exploratory analysis where causal mech-
anisms and processes are poorly understood. We demonstrate this in the fol-
lowing example that predicts whether or not papers in our dataset get cited
during the period of data collection. In particular, we try to find out whether
textual features of the abstracts can help explain citation outcomes. Our ap-
proach follows that used by Mitra and Gilbert (2014), who sought to under-
stand what textual features of Kickstarter projects predicted whether or not
projects were funded.

Our application: Predicting paper citation

We use multiple attributes of the papers in our dataset, including text of their
abstracts, to predict citations. About 42% of the papers (9,713 out of 23,131)
received one or more citations (µ = 3; σ = 19). Can textual features of the
abstracts explain which papers receive citations? What about other attributes,
such as the publication venue or subject area? A prediction analysis can help
evaluate these competing alternatives.

To begin, we generate a large set of features for each paper from the Scopus
data. Our measures include the year, month, and language of publication as
well as the number of citations each paper contains to prior work. We also
include the modal country of origin of the authors as well as the affiliation
of the first author. Finally, we include the publication venue and publication
subject area as provided by Scopus. Then, we build the textual features by
taking all of the abstracts and moving them through the following sequence
of steps similar to those we took when performing LDA: we lowercase all the
words; remove all stop words; and create uni-, bi-, and tri-grams.

We also apply some inclusion criteria to both papers and features. To avoid
subject-specific jargon, we draw features only from those terms that appear
across at least 30 different subject areas. To avoid spurious results, we also
exclude papers that fall into unique categories. Specifically, we remove papers
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which are the only publications in a given language, journal, or subject area.
These sorts of unique cases can cause problems in the context of prediction
tasks because they may predict certain outcomes perfectly. As a result, it is
often better to focus on datasets and measures that are less ‘sparse’ (i.e., char-
acterized by rare, one-off observations). Once we drop the 8,494 papers that
do not meet these criteria, we are left with 14,126 papers.

We predict the dichotomous outcome variable cited, which indicates whether
a paper received any citations during the period covered by our dataset (2004-
2016). We use a method of penalized logistic regression called the least absolute
shrinkage and selection operator (also known as the Lasso) to do the predic-
tion work. Although, the technical details of Lasso models lie beyond the
scope of this chapter, it, and other penalized regression models work well
on data where many of the variables have nearly identical values (sometimes
called collinear variables because they would sit right around the same line if
you plotted them) and/or many zero values (this is also called ‘sparse’ data)
(Friedman, Hastie, & Tibshirani, 2010; James et al., 2013). In both of these
situations, some measures are redundant; the Lasso uses clever math to pick
which of those measures should go into your final model and which ones
should be, in effect, left out.4 The results of a Lasso model are thus more
computationally tractable and easier to interpret.

We use a common statistical technique called cross-validation to validate
our models. Cross-validation helps solve another statistical problem that can
undermine the results of predictive analysis. Imagine fitting an ordinary least
squares regression model on a dataset to generate a set of parameter estimates
reflecting the relationships between a set of independent variables and some
outcome. The model results provide a set of weights (the coefficients) that
represent the strength of the relationships between each predictor and the out-
come. Because of the way regression works (and because this is a hypothet-
ical example and we can assume data that does not violate the assumptions
of our model), the model weights are the best, linear, unbiased estimators
of those relationships. In other words, the regression model fits the data as
well as possible. However, nothing about fitting this one model ensures that
the same regression weights will provide the best fit for some new data from
the same population that the model has not seen. A model may be overfit
if it excellently predicts the dataset it was fitted on but poorly predicts new

4To put things a little more technically, a fitted Lasso model selects the optimal set of
variables that should have coefficient values greater than zero and shrinks the rest of the co-
efficients to zero without sacrificing goodness of fit (Tibshirani, 1996).
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data. Overfitting in this way is a common concern in statistical prediction.
Cross-validation addresses this overfitting problem. First, the training data is
split into equal-sized groups (typically 10). Different model specifications are
tested by iteratively training them on all but one of the groups, and testing
how well they predict the final group. The specification that has the lowest
average error is then used on the full training data to estimate coefficients.5

This approach ensures that the resulting models not only fit the data that we
have, but that they are likely to predict the outcomes for new, unobserved re-
sults. For each model, we report the mean error rate from the cross-validation
run which produced the best fit.

Our analysis proceeds in multiple stages corresponding to the different
types of measures we use to predict citation outcomes. We start by estimating
a model that includes only the features that correspond to paper and author-
level attributes (year, month, and language of publication, modal author coun-
try). We then add information about the first author’s affiliation. Next, we
include predictors that have more to do with research topic and field-level
variations (publication venue and subject area). Finally, we include the tex-
tual features (terms) from the abstracts.

Results

Table 6.6 summarizes the results of our prediction models. We include goodness-
of-fit statistics and prediction error rates for each model as we add more fea-
tures. A ‘better’ model will fit the data more closely (i.e., it will explain a
larger percentage of the deviance) and produce a lower error rate. We also in-
clude a supplementary error rate calculated against the ‘holdout’ data created
from a random subset of 10% of the original dataset that was not used in any
of our models. An intuitive way to think about the error rate is to imagine
it as the percentage of unobserved papers for which the model will correctly
predict whether or not it receives any citations. The two error rate statistics
are just this same percentage calculated on different sets of unobserved pa-
pers. Unlike a normal regression analysis, we do not report or interpret the
full battery of coefficients, standard errors, t-statistics, or p-values. In part,
we do not report this information because the results of these models are un-
wieldy – each model has over 2,000 predictors and most of those predictors
have coefficients of zero! Additionally, unlike traditional regression results,

5For our Lasso models, cross-validation was used to select λ, a parameter that tells the
model how quickly to shrink variable coefficients. We include this information for those of
you who want to try this on your own or figure out the details of our statistical code.
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Model N features Deviance (%) CV error (%) Hold-back error (%)
Controls 98 7 38 37
+ Affiliation 1909 23 39 37
+ Subject 2096 28 37 34
+ Venue 3902 55 34 30
+ Terms 4411 72 29 27

Table 6.6: Summary of fitted models predicting citation. The ‘Model’ column de-
scribes which features were included. The N features column shows the number of
features included in the prediction. ‘Deviance’ summarizes the goodness of fit as a per-
centage of the total deviance accounted for by the model. ‘CV error’ (cross-validation
error) reports the prediction error rates of each model in the cross-validation proce-
dure conducted as part of the parameter estimation process. ‘Holdout error’ shows
the prediction error on a random 10% subset of the original dataset not included in
any of the model estimation procedures.

coefficient interpretation and null hypothesis testing with predictive models
remain challenging (for reasons that lie beyond the scope of this chapter). In-
stead, we focus on interpreting the relative performance of each set of features.
After we have done this, we refer to the largest coefficients to help add nuance
to our interpretation.

The results reveal that all of the features improve the goodness of fit, but
not necessarily the predictive performance of the models. As a baseline, our
controls-only model has a 37% classification error on the holdout sample.
This level of precision barely improves with the addition of both the author
affiliation and subject area features. We observe substantial improvements in
the prediction performance when the models include the publication venue
features and the abstract text terms. When it comes to research about social
media, it appears that venue and textual content are the most informative fea-
tures for predicting whether or not articles get cited.

To understand these results more deeply, we explore the non-zero coeffi-
cient estimates for the best-fitting iteration of the full model. Recall that the
Lasso estimation procedure returns coefficients for a subset of the parameters
that produce the best fit and shrinks the other coefficients to zero. While
it does not make sense to interpret the coefficients in the same way as tradi-
tional regression, the non-zero coefficients indicate what features the model
identified as the most important predictors of the outcome. First, we note
that among the 1,482 features with non-zero coefficients, only 2% are control
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Feature Type Coefficient
Multiple Sclerosis Journal venue -2.969
Nature Communications venue 2.871
Journal of Information Technology venue 2.762
CrossTalk venue 2.543
21 term -2.472
NICTA Victoria Research Laboratory affiliation -2.260
The Department of Education, Sookmyung Women’s University affiliation -2.196
20th ITS World Congress Tokyo 2013 venue -2.191
Electronics and Communications in Japan venue -2.085
British Journal of Nursing venue 2.077

Table 6.7: Feature, variable type, and beta value for top 10 non-zero coefficients es-
timated by the best fitting model with all features included. Note that the outcome is
coded such that positive coefficients indicate features that positively predict the ob-
served outcome of interest (getting cited) while negative coefficients indicate features
that negatively predict the outcome.

measures (country, language, month, and year of publication). Similarly, 3%
are subject features. In contrast, 15% are affiliation features, 34% are venue
features, and a whopping 44% are textual terms. Once again, we find that
publication venue and textual terms do the most to explain which works re-
ceive citations.

Closer scrutiny of the features with the largest coefficients adds further nu-
ance to this interpretation. Table 6.7 shows the ten features with the largest
coefficients in terms of absolute value. The Lasso model identified these co-
efficients as the most informative predictors of whether or not papers in our
dataset get cited. Here we see that the majority of these most predictive fea-
tures are publication venues. The pattern holds across the 100 features with
the largest coefficients, of which 75 are publication venues and only 2 are tex-
tual terms from the abstracts. In other words, variations in publication venue
predict which work gets cited more than any other type of feature.

Discussion

The results of our prediction models suggest that two types of features – publi-
cation venue and textual terms – do the most to explain whether or not papers
on social media get cited. Both types of features substantially improve model
fit and reduce predictive error in ten-fold cross-validation as well as on a hold-
out sub-sample of the original dataset. However, the venue features appear
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to have a much stronger relationship to our outcome (citation), with the vast
majority of the most influential features in the model coming from the venue
data (75 of the 100 largest coefficients).

As we said at the outset of this section, statistical prediction offers an ex-
ploratory, data-driven, and inductive approach. Based on these findings, we
conclude that the venue where research on social media gets published better
predicts whether that work gets cited than the other features in our dataset.
Textual terms used in abstracts help to explain citation outcomes across the
dataset, but the relationship between textual terms and citation only becomes
salient in aggregate. On their own, hardly any of the textual terms approach
the predictive power of the venue features. Features such as author affilia-
tion and paper-level features like language or authors’ country provide less
explanatory power overall.

The approach has several important limitations. Most important, statisti-
cal prediction only generates ‘predictions’ in a fairly narrow, statistical sense.
Language of prediction often sounds like the language of causality and infer-
ring process, but these methods do not guarantee that anything being stud-
ied is causal or explanatory in terms of mechanisms. We do not claim that
a paper’s publication venue or the phrases in its abstract cause people to cite
it. Rather, we think these attributes of a paper likely index specific qualities
of an article that are linked to citation outcomes. Just because something is
predictive does not mean it is deterministic or causal. We also note that the
sort of machine learning approach we demonstrate here does not support the
types of inferences commonly made with frequentist null hypothesis tests (the
sort that lead to p-values and stars next to ‘significant’ variables in a regres-
sion model). Instead, the interpretation of learning models rests on looking
closely at model summary statistics, objective performance metrics (such as
error rates), and qualitative exploration of model results.

CONCLUSION

In this chapter, we have described computational social scientific analysis of
social media by walking through a series of example analyses. We began with
the process of collecting a dataset of bibliographic information on social me-
dia scholarship using a web API similar to those provided by most social me-
dia platforms. We then subjected this dataset to three of the mostly widely
used computational techniques: network analysis, topic modeling, and statis-
tical prediction. Most empirical studies would employ a single, theoretically-
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motivated analytic approach, but we compromised depth in order to illustrate
the diversity of computational research methodologies available. As we have
shown, each approach has distinct strengths and limitations.

We believe our examples paint a realistic picture of what is involved in
typical computational social media research. However, these analyses remain
limited in scope and idiosyncratic in nature. For example, there are popular
computational methods we did not cover in this chapter. Obvious omissions
include other forms of machine learning, such as decision trees and collabo-
rative filtering (Resnick, Iacovou, Suchak, Bergstrom, & Riedl, 1994), as well
as simulation-based techniques such as agent-based modeling (Macy & Willer,
2002; Wilensky & Rand, 2015).

Despite our diffuse approach, we report interesting substantive findings
about the history and state of social media research. We discovered a num-
ber of diverse communities studying social media. We used different tools to
identify these communities, including the categories provided by Scopus, the
results of a community detection algorithm applied to the citation network,
and the topics identified by topic modeling. Each analysis provided a slightly
different picture of social media research. We learned that the study of social
media related to media use and medical research is on the rise. We also learned
that social network research was influential at the early stages of social media
research, but that it is not as influential in the citation network. All of these
findings are complicated by our final finding that subject area is not as good a
predictor of whether a paper will receive a citation as the publication venue
and the terms used in the abstract.

In the process of describing our analyses, we tried to point to many of
the limitations of computational research methods. Although computational
methods and the promise of ‘big data’ elicit excitement, this hype can obscure
the fact that large datasets and fast computers do nothing to obviate the fun-
damentals of high quality social science: researchers must understand their
empirical settings, design studies with care, operationalize concepts in ways
that are valid and honest, take steps to ensure that their findings generalize,
and ask tough questions about the substantive impacts of observed relation-
ships. These tenets extend to computational research as well.

Other challenges go beyond methodological limitations. Researchers work-
ing with passively collected data generated by social media can face complex
issues around the ethics of privacy and consent as well as the technical and
legal restrictions on automated data collection. Computational analyses of

git revision ee37506 on 2018/02/19



28

social media often involve datasets gathered without the sort of active con-
sent considered standard in other arenas of social scientific inquiry. In some
cases, data is not public and researchers access it through private agreements
or employment arrangements with companies that own platforms or propri-
etary databases. In others, researchers obtain social media data from public
or semi-public sources, but the individuals creating the data may not consider
their words or actions public and may not even be aware that their partici-
pation generates durable digital traces (boyd & Crawford, 2012). A number
of studies have been criticized for releasing information that researchers con-
sidered public, but which users did not (Zimmer, 2016). In other cases, re-
searchers pursuing legitimate social inquiry have become the target of compa-
nies or state prosecutors who selectively seek to enforce terms of service agree-
ments or invoke broad laws such as the federal Computer Fraud and Abuse
Act (CFAA).6

We advise computational researchers to take a cautious and adaptive ap-
proach to these issues. Existing mechanisms such as Institutional Review
Boards and federal laws have been slow to adjust to the realities of online re-
search. In many cases, the authority and resources to anticipate, monitor, or
police irresponsible behaviors threaten to impose unduly cumbersome restric-
tions. In other cases, review boards’ policies greenlight research that seems
deeply problematic. We believe researchers must think carefully about the
specific implications of releasing specific datasets. In particular, we encour-
age abundant caution and public consultation before disseminating anything
resembling personal information about individual social media system users.
Irresponsible scholarship harms both subjects and reviewers and undermines
the public trust scholars need to pursue their work.

At the same time, we remain excited and optimistic about the future of
computational studies of social media. As we have shown, the potential ben-
efits of computational methods are numerous. Trace data can capture behav-
iors that are often difficult to observe in labs and that went unrecorded in
offline interactions. Large datasets allow researchers to measure real effects
obscured by large amounts of variation, and to make excellent predictions us-
ing relatively simple models. These new tools and new datasets provide a real
opportunity to advance our understanding of the world. Such opportunities

6See Sandvig’s (2016) blogpost, “Why I am Suing the Government,” for a thoughtful ar-
gument against the incredibly vague and broad scope of the CFAA as well as a cautionary tale
for those who write software to conduct bulk downloads of public website data for research
purposes.
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should not be undermined by overly-broad laws or alarmist concerns.

Finally, much of computational social science, including this chapter, is
data-focused rather than theory-focused. We would encourage others to do as
we say, and not as we do. The great promise of computational social science
is the opportunity to test and advance social science theory. We hope that
readers of this chapter will think about whether there are theories they are
interested in which might benefit from a computational approach. We urge
readers with a stronger background in theory to consider learning the tools
to conduct these types of analyses and to collaborate with technically minded
colleagues.

Reproducible research

Computational research methods also have the important benefit of being ex-
traordinarily reproducible and replicable (Stodden, Guo, & Ma, 2013). Un-
like many other forms of social research, a computational researcher can the-
oretically use web APIs to collect a dataset identical to one used in a previous
study. Even when API limits or other factors prohibit creating an identical
dataset, researchers can work to make data available alongside the code they
use for their analysis, allowing others to re-run the study and assess the results
directly. Making code and data available also means that others can analyze
and critique it. This can create uncomfortable situations, but we feel that such
situations serve the long-term interests of society and scholarly integrity. Al-
though not every computational researcher shares their code (Stodden et al.,
2013) there are movements to encourage or require this (LeVeque, Mitchell,
& Stodden, 2012; Stodden et al., 2013; Bollen et al., 2015).

We have tried to follow emerging best practices with regards to repro-
ducibility in this chapter. We have released an online copy of all of the code
that we used to create this chapter. By making our code available, we hope
to make our unstated assumptions and decisions visible. By looking at our
code, you might find errors or omissions which can be corrected in subse-
quent work. By releasing our code and data, we also hope that others can learn
from and build on our work. For example, a reader with access to a server and
some knowledge of the Python and R programming languages should be able
to build a more up-to-date version of our dataset years from now. Another
reader might create a similar bibliographic analysis of another field. By using
our code, this reader should able to produce results, tables, and figures like
those in this chapter. Data repositories, such as the Harvard Dataverse, make
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storing and sharing data simple and inexpensive. When thinking of the op-
portunities for openness, transparency, and collaboration, we are inspired by
the potential of computational research methods for social media. We hope
that our overview, data, and code can facilitate more of this type of work.

ONLINE SUPPLEMENTS

All of the code used to generate our dataset, to complete our analyses, and even
to produce the text of this chapter, is available for download on the following
public website: https://communitydata.cc/social-media-chapter/

Because the Scopus dataset is constantly being updated and changed, re-
producing the precise numbers and graphs in this chapter requires access to
a copy of the dataset we collected from Scopus in 2016. Unfortunately, like
many social media websites, the terms of use for the Scopus APIs prohibit the
re-publication of data collected from their database. However, they did allow
us to create a private, access-controlled, replication dataset in the Harvard
Dataverse archive at the following URL: http://dx.doi.org/10.7910/DVN/
W31PH5. Upon request, we will grant access to this dataset to any researchers
interested in reproducing our analyses.
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